
LINKED LISTS

OVERVIEW

OVERVIEW

▪ What is a linked list?

▪ A collection of nodes objects that have been dynamically

allocated and connected to each other

▪ Each node object contains several pieces of information

we want to store (student ID, GPA, etc.)

▪ Each node object has a pointer to another node object

▪ The pointer to the first node is stored in a head pointer

▪ A linked list can grow dynamically by adding more nodes

CSCE 2014 - Programming Foundations II 2

head ID

GPA

Next

ID

GPA

Next

null pointer

OVERVIEW

▪ Pro: Arrays are very fast to access

▪ We can read/write any location using array index

▪ Con: Arrays are fixed size

▪ Must create a new array and copy data to grow in size

▪ Pro: Linked lists are dynamic inn size

▪ We can insert or delete nodes anywhere without moving data

▪ Con: Linked lists are slow to access

▪ Must start at head and loop over linked list to find data

CSCE 2014 - Programming Foundations II 3

OVERVIEW

▪ Review of pointer syntax:

▪ We declare a pointer variable using * operator

▪ A pointer contains the address of another variable/object

int *ptr;

▪ We allocate memory for a variable/object using new command

▪ We draw this using one box pointing to another box

ptr = new int;

CSCE 2014 - Programming Foundations II 4

ptr -

OVERVIEW

▪ Review of pointer syntax:

▪ To access this dynamic memory we use * operator again

▪ The * in front of a pointer dereferences the pointer

*ptr = 42;

▪ We can allocate memory for an array with the new command

▪ The array size is given inside square brackets

ptr = new int[10];

CSCE 2014 - Programming Foundations II 5

ptr 42

ptr - - … -

0 1 9

OVERVIEW

▪ Review of pointer syntax:

▪ To access data in dynamic array we use index notation just

like we use for a static array

ptr[1] = 17;

▪ We can also access array using * operator by adding the

index to the pointer address (ugly option)

cout << *(ptr+1);

CSCE 2014 - Programming Foundations II 6

ptr - 17 … -

0 1 9

OVERVIEW

▪ Review of pointer syntax:

▪ To return memory to the O/S we use the delete command

▪ We should also set pointer to NULL (pointer to nothing)

delete ptr;

ptr = NULL;

▪ To return memory for an array we add [] before pointer

▪ We should also set pointer to NULL (pointer to nothing)

delete [] ptr;

ptr = NULL;

CSCE 2014 - Programming Foundations II 7

OVERVIEW

▪ Syntax for object pointers:

▪ To store data in a linked list we must declare a Node class

class Node

{

public:

int ID;

float GPA;

Node *next;

}

CSCE 2014 - Programming Foundations II 8

We simplify linked list code

by using a class with public

data and no methods

OVERVIEW

▪ Syntax for object pointers:

▪ To store data in a linked list we must declare a Node class

class Node

{

public:

int ID;

float GPA;

Node *next;

}

CSCE 2014 - Programming Foundations II 9

We store data in a collection

of Node attributes

OVERVIEW

▪ Syntax for object pointers:

▪ To store data in a linked list we must declare a Node class

class Node

{

public:

int ID;

float GPA;

Node *next;

}

CSCE 2014 - Programming Foundations II 10

We use the next pointer to link

this Node to another Node in list

OVERVIEW

▪ Syntax for object pointers:

▪ We declare a Node pointer variable using * operator

▪ This pointer should be initialized to NULL

Node *ptr = NULL;

▪ To allocate space for a Node we use the new command

ptr = new Node();

CSCE 2014 - Programming Foundations II 11

ID

GPA

next

ptr

ptr

This allocates memory large

enough for the Node object

We draw NULL using ground symbol

OVERVIEW

▪ Syntax for object pointers:

▪ To access fields inside a Node use use arrow -> notation

ptr->ID = 123456;

ptr->GPA = 3.4;

ptr->next = NULL;

▪ We start at pointer variable, follow the arrow, and go to field

CSCE 2014 - Programming Foundations II 12

123456

3.4

next

ptr

OVERVIEW

▪ Syntax for object pointers:

▪ If the Node fields are private, we must use get and set

methods in the class to access the data fields

▪ We use arrow -> notation before the method name

ptr->setID(654321);

ptr->setGPA(2.7);

ptr->setNext(NULL);

CSCE 2014 - Programming Foundations II 13

654321

2.7

next

ptr

OVERVIEW

▪ A linked list ADT has the following operations:

▪ Create – Initialize linked list data structure

▪ Insert – Insert data into linked list (head, tail, sorted)

▪ Print – Print all data in linked list

▪ Search – Search for specific data in linked list

▪ Delete – Remove specific value from the linked list

▪ Copy – Copy all data from one linked list to another

▪ Destroy – Delete linked list data structure

CSCE 2014 - Programming Foundations II 14

LINKED LISTS

OPERATION: CREATE LIST

CREATE LIST

▪ To create a linked list we implement Node class with the

data fields we want to store and declare a head pointer

▪ We initialize head to NULL to create an empty linked list

class Node

{

public:

int ID;

float GPA;

Node *next;

}

Node *head = NULL;

CSCE 2014 - Programming Foundations II 16

The head pointer contains

the address of the first Node

in the linked list

LINKED LISTS

OPERATION: INSERT HEAD

INSERT HEAD

▪ The fastest way to insert data into a linked list is to

connect a new node before the head of the current list

Node *temp;

temp = new Node();

temp->ID = 123123;

temp->GPA = 3.1;

temp->next = head;

head = temp;

CSCE 2014 - Programming Foundations II 18

Allocate the new Node

Save data in the Node

Connect the Node to list

INSERT HEAD

CSCE 2014 - Programming Foundations II 19

head 123456

3.7

next

567890

2.5

next

next

temp
Node *temp;

temp = new Node();

temp->ID = 123123;

temp->GPA = 3.1;

temp->next = head;

head = temp;

INSERT HEAD

CSCE 2014 - Programming Foundations II 20

head 123456

3.7

next

567890

2.5

next

123123

next

temp
Node *temp;

temp = new Node();

temp->ID = 123123;

temp->GPA = 3.1;

temp->next = head;

head = temp;

INSERT HEAD

CSCE 2014 - Programming Foundations II 21

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

temp
Node *temp;

temp = new Node();

temp->ID = 123123;

temp->GPA = 3.1;

temp->next = head;

head = temp;

INSERT HEAD

CSCE 2014 - Programming Foundations II 22

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

temp
Node *temp;

temp = new Node();

temp->ID = 123123;

temp->GPA = 3.1;

temp->next = head;

head = temp;

INSERT HEAD

CSCE 2014 - Programming Foundations II 23

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

temp
Node *temp;

temp = new Node();

temp->ID = 123123;

temp->GPA = 3.1;

temp->next = head;

head = temp;

INSERT HEAD

▪ When we do multiple insert head operations the data in

the linked list is stored in reverse order

▪ The first value inserted will be at the end of the list

▪ The last value inserted will be at the head of the list

insert_head(3);

insert_head(21);

insert_head(42);

CSCE 2014 - Programming Foundations II 24

head 42 21 3

LINKED LISTS

OPERATION: INSERT TAIL

INSERT TAIL

▪ We can also insert data at the tail of the linked list

▪ Walk the linked list to find the last node

▪ Create a new node and copy data into node

▪ Assign pointer to connect the new node to linked list

▪ We must handle the special case of an empty list

insert_tail(33);

insert_tail(72);

insert_tail(19);

CSCE 2014 - Programming Foundations II 26

head 33 72 19

Data is stored in same order it

was inserted into the linked list

INSERT TAIL

// Walk the list to end

Node * temp = head;

while ((temp != NULL)&&

(temp->next != NULL))

temp = temp->next;

CSCE 2014 - Programming Foundations II 27

head 33 72 19

temp

Set temp pointer to head of list

INSERT TAIL

// Walk the list to end

Node * temp = head;

while ((temp != NULL)&&

(temp->next != NULL))

temp = temp->next;

CSCE 2014 - Programming Foundations II 28

head 33 72 19

temp

Check if temp pointer is not null

and next pointer is not null

INSERT TAIL

// Walk the list to end

Node * temp = head;

while ((temp != NULL)&&

(temp->next != NULL))

temp = temp->next;

CSCE 2014 - Programming Foundations II 29

head 33 72 19

temp

Goes to 2nd node in the list

INSERT TAIL

// Walk the list to end

Node * temp = head;

while ((temp != NULL)&&

(temp->next != NULL))

temp = temp->next;

CSCE 2014 - Programming Foundations II 30

head 33 72 19

temp

Check if temp pointer is not null

and next pointer is not null

INSERT TAIL

// Walk the list to end

Node * temp = head;

while ((temp != NULL)&&

(temp->next != NULL))

temp = temp->next;

CSCE 2014 - Programming Foundations II 31

head 33 72 19

temp

Goes to 3rd node in the list

INSERT TAIL

// Walk the list to end

Node * temp = head;

while ((temp != NULL)&&

(temp->next != NULL))

temp = temp->next;

CSCE 2014 - Programming Foundations II 32

head 33 72 19

temp

We stop when we reach last

node because next is null

INSERT TAIL

// Insert at end of list

if (temp != NULL)

{

temp->next = new Node();

temp->next->num = 42;

temp->next->next = NULL;

}

CSCE 2014 - Programming Foundations II 33

head 33 72

temp

19

INSERT TAIL

// Insert at end of list

if (temp != NULL)

{

temp->next = new Node();

temp->next->num = 42;

temp->next->next = NULL;

}

CSCE 2014 - Programming Foundations II 34

head 33 72

42temp

19

INSERT TAIL

// Insert at end of list

if (temp != NULL)

{

temp->next = new Node();

temp->next->num = 42;

temp->next->next = NULL;

}

CSCE 2014 - Programming Foundations II 35

head 33 72

42temp

19

INSERT TAIL

// Insert into empty list

if (temp == NULL)

{

head = new Node();

head->num = 42;

head->next = NULL;

}

CSCE 2014 - Programming Foundations II 36

head

temp

True when inserting into

an empty linked list

INSERT TAIL

// Insert into empty list

if (temp == NULL)

{

head = new Node();

head->num = 42;

head->next = NULL;

}

CSCE 2014 - Programming Foundations II 37

head

temp

INSERT TAIL

// Insert into empty list

if (temp == NULL)

{

head = new Node();

head->num = 42;

head->next = NULL;

}

CSCE 2014 - Programming Foundations II 38

head

temp

42

INSERT TAIL

// Insert into empty list

if (temp == NULL)

{

head = new Node();

head->num = 42;

head->next = NULL;

}

CSCE 2014 - Programming Foundations II 39

head

temp

42

LINKED LISTS

OPERATION: PRINT LIST

PRINT LIST

▪ To print all the data in a linked list we must start a the

“head” and walk the list by following “next” pointers

Node *ptr = head;

while (ptr != NULL)

{

cout << ptr->ID << endl;

cout << ptr->GPA << endl;

ptr = ptr->next;

}

CSCE 2014 - Programming Foundations II 41

Create a pointer to head of list

PRINT LIST

▪ To print all the data in a linked list we must start a the

“head” and walk the list by following “next” pointers

Node *ptr = head;

while (ptr != NULL)

{

cout << ptr->ID << endl;

cout << ptr->GPA << endl;

ptr = ptr->next;

}

CSCE 2014 - Programming Foundations II 42

Loop until pointer is reaches

the end of the linked list

PRINT LIST

▪ To print all the data in a linked list we must start a the

“head” and walk the list by following “next” pointers

Node *ptr = head;

while (ptr != NULL)

{

cout << ptr->ID << endl;

cout << ptr->GPA << endl;

ptr = ptr->next;

}

CSCE 2014 - Programming Foundations II 43

Print out Node data

PRINT LIST

▪ To print all the data in a linked list we must start a the

“head” and walk the list by following “next” pointers

Node *ptr = head;

while (ptr != NULL)

{

cout << ptr->ID << endl;

cout << ptr->GPA << endl;

ptr = ptr->next;

}

CSCE 2014 - Programming Foundations II 44

Go to the next Node in the list

PRINT LIST

CSCE 2014 - Programming Foundations II 45

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

ptr Node *ptr = head;

while (ptr != NULL)

{

 cout << ptr->ID << endl;

 cout << ptr->GPA << endl;

 ptr = ptr->next;

}

PRINT LIST

CSCE 2014 - Programming Foundations II 46

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

ptr Node *ptr = head;

while (ptr != NULL)

{

 cout << ptr->ID << endl;

 cout << ptr->GPA << endl;

 ptr = ptr->next;

}

PRINT LIST

CSCE 2014 - Programming Foundations II 47

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

ptr Node *ptr = head;

while (ptr != NULL)

{

 cout << ptr->ID << endl;

 cout << ptr->GPA << endl;

 ptr = ptr->next;

}

PRINT LIST

CSCE 2014 - Programming Foundations II 48

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

ptr Node *ptr = head;

while (ptr != NULL)

{

 cout << ptr->ID << endl;

 cout << ptr->GPA << endl;

 ptr = ptr->next;

}

PRINT LIST

CSCE 2014 - Programming Foundations II 49

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

ptr Node *ptr = head;

while (ptr != NULL)

{

 cout << ptr->ID << endl;

 cout << ptr->GPA << endl;

 ptr = ptr->next;

}

PRINT LIST

CSCE 2014 - Programming Foundations II 50

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

ptr Node *ptr = head;

while (ptr != NULL)

{

 cout << ptr->ID << endl;

 cout << ptr->GPA << endl;

 ptr = ptr->next;

}

PRINT LIST

CSCE 2014 - Programming Foundations II 51

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

ptr Node *ptr = head;

while (ptr != NULL)

{

 cout << ptr->ID << endl;

 cout << ptr->GPA << endl;

 ptr = ptr->next;

}

PRINT LIST

CSCE 2014 - Programming Foundations II 52

ptr Node *ptr = head;

while (ptr != NULL)

{

 cout << ptr->ID << endl;

 cout << ptr->GPA << endl;

 ptr = ptr->next;

}

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

The loop stops

because ptr is NULL

PRINT LIST

▪ A linked list can also be printed with a recursive function

void print_list(Node *ptr)

{

if (ptr != NULL)

{

cout << ptr->ID << endl;

cout << ptr->GPA << endl;

print_list(ptr->next);

}

}

...

print_list(head)

CSCE 2014 - Programming Foundations II 53

We pass in pointer to first node

PRINT LIST

▪ A linked list can also be printed with a recursive function

void print_list(Node *ptr)

{

if (ptr != NULL)

{

cout << ptr->ID << endl;

cout << ptr->GPA << endl;

print_list(ptr->next);

}

}

...

print_list(head)

CSCE 2014 - Programming Foundations II 54

Terminating condition stops

printing at end of the linked list

PRINT LIST

▪ A linked list can also be printed with a recursive function

void print_list(Node *ptr)

{

if (ptr != NULL)

{

cout << ptr->ID << endl;

cout << ptr->GPA << endl;

print_list(ptr->next);

}

}

...

print_list(head)

CSCE 2014 - Programming Foundations II 55

Print data in the first

node of this linked list

PRINT LIST

▪ A linked list can also be printed with a recursive function

void print_list(Node *ptr)

{

if (ptr != NULL)

{

cout << ptr->ID << endl;

cout << ptr->GPA << endl;

print_list(ptr->next);

}

}

...

print_list(head)

CSCE 2014 - Programming Foundations II 56

Call function recursively with

pointer to the next node to

print the rest of linked list

PRINT LIST

▪ A linked list can also be printed with a recursive function

void print_list(Node *ptr)

{

if (ptr != NULL)

{

cout << ptr->ID << endl;

cout << ptr->GPA << endl;

print_list(ptr->next);

}

}

...

print_list(head);

CSCE 2014 - Programming Foundations II 57

Call the function in main with

head of the linked list

PRINT LIST

▪ Box method trace of recursive print_list

CSCE 2014 - Programming Foundations II 58

head 123456

3.7

next

567890

2.5

next

123123

3.1

next

main()

{

…

print_list(head);

}

print_list(ptr)

{

…

print_list(ptr-

>next);

}

print_list(ptr)

{

…

print_list(ptr-

>next);

}

print_list(ptr)

{

…

print_list(ptr-

>next);

}

PRINT LIST

▪ A linked list can also be printed in reverse order

void print_list(Node *ptr)

{

if (ptr != NULL)

{

print_list(ptr->next);

cout << ptr->ID << endl;

cout << ptr->GPA << endl;

}

}

...

print_list(head)

CSCE 2014 - Programming Foundations II 59

Moving the recursive call

here will print the linked list

in reverse order because

we print information after

returning from the recursive

function call

LINKED LISTS

OPERATION: SEARCH

SEARCH LIST

▪ The goal of search is to “walk the linked list” starting at

the head to see if a specific value is stored in the list

// Walk the list to desired value

Node * temp = head;

while ((temp != NULL)&&

(temp->num != value))

temp = temp->next;

if (temp != NULL)

cout << value << “was found\n”;

CSCE 2014 - Programming Foundations II 61

Create a pointer to head of list

SEARCH LIST

▪ The goal of search is to “walk the linked list” starting at

the head to see if a specific value is stored in the list

// Walk the list to desired value

Node * temp = head;

while ((temp != NULL)&&

(temp->num != value))

temp = temp->next;

if (temp != NULL)

cout << value << “was found\n”;

CSCE 2014 - Programming Foundations II 62

Check if pointer is not null and

desired value is not found

SEARCH LIST

▪ The goal of search is to “walk the linked list” starting at

the head to see if a specific value is stored in the list

// Walk the list to desired value

Node * temp = head;

while ((temp != NULL)&&

(temp->num != value))

temp = temp->next;

if (temp != NULL)

cout << value << “was found\n”;

CSCE 2014 - Programming Foundations II 63

Go to next node in list

SEARCH LIST

▪ The goal of search is to “walk the linked list” starting at

the head to see if a specific value is stored in the list

// Walk the list to desired value

Node * temp = head;

while ((temp != NULL)&&

(temp->num != value))

temp = temp->next;

if (temp != NULL)

cout << value << “was found\n”;

CSCE 2014 - Programming Foundations II 64

Print message if found

SEARCH LIST

// Walk the list to desired value

Node * temp = head;

while ((temp != NULL)&&

(temp->value != 72))

temp = temp->next;

CSCE 2014 - Programming Foundations II 65

head 33 72 19

temp

SEARCH LIST

// Walk the list to desired value

Node * temp = head;

while ((temp != NULL)&&

(temp->value != 72))

temp = temp->next;

CSCE 2014 - Programming Foundations II 66

head 33 72 19

temp

True so we continue

SEARCH LIST

// Walk the list to desired value

Node * temp = head;

while ((temp != NULL)&&

(temp->value != 72))

temp = temp->next;

CSCE 2014 - Programming Foundations II 67

head 33 72 19

temp

Go to next node

SEARCH LIST

// Walk the list to desired value

Node * temp = head;

while ((temp != NULL)&&

(temp->value != 72))

temp = temp->next;

CSCE 2014 - Programming Foundations II 68

head 33 72 19

temp

Value equals 72 so

this while loop stops

SEARCH LIST

// Walk the list to desired value

Node * temp = head;

while ((temp != NULL)&&

(temp->value != 101))

temp = temp->next;

CSCE 2014 - Programming Foundations II 69

head 33 72 19

temp

What happens if data is not

found in the linked list?

We will loop over whole list

and stop when temp is NULL

LINKED LISTS

OPERATION: SORTED INSERT

SORTED INSERT

▪ The goal of sorted insert is to insert nodes into the list so

data is always sorted in ascending (or descending) order

CSCE 2014 - Programming Foundations II 71

Values > 42

inserted here

head 3 25 42

Values < 3

inserted here

Values 4..24

inserted here
Values 26..41

inserted here

SORTED INSERT

▪ Pseudo code algorithm

▪ Start with two pointers previous and current to head node

▪ Walk list until current value is greater than insertion value

▪ Previous value will be is less than insertion value

▪ Create a new node and store the insertion value

▪ Connect new node to list between previous and current

CSCE 2014 - Programming Foundations II 72

head 3 25 42

33previous current

SORTED INSERT

▪ Implementation of sorted insert

// Walk the list to insertion point

Node *curr = head;

node *prev = head;

while ((curr != NULL))&&(curr->num < value))

{

prev = curr;

curr = curr->next;

}

CSCE 2014 - Programming Foundations II 73

Stops loop when

curr is NULL or

num >= value

Moves both pointers one

Node down the linked list with

prev one node behind curr

SORTED INSERT

// Walk the list to insertion point

Node *curr = head;

node *prev = head;

while ((curr != NULL))&&(curr->num < value))

{

prev = curr;

curr = curr->next;

}

CSCE 2014 - Programming Foundations II 74

head 3 25 42

previous

current
We want to insert

value 33 here

SORTED INSERT

// Walk the list to insertion point

Node *curr = head;

node *prev = head;

while ((curr != NULL))&&(curr->num < value)) // TRUE

{

prev = curr;

curr = curr->next;

}

CSCE 2014 - Programming Foundations II 75

head 3 25 42

previous

current

SORTED INSERT

// Walk the list to insertion point

Node *curr = head;

node *prev = head;

while ((curr != NULL))&&(curr->num < value))

{

prev = curr;

curr = curr->next;

}

CSCE 2014 - Programming Foundations II 76

head 3 25 42

previous

current

SORTED INSERT

// Walk the list to insertion point

Node *curr = head;

node *prev = head;

while ((curr != NULL))&&(curr->num < value)) // TRUE

{

prev = curr;

curr = curr->next;

}

CSCE 2014 - Programming Foundations II 77

head 3 25 42

previous

current

SORTED INSERT

// Walk the list to insertion point

Node *curr = head;

node *prev = head;

while ((curr != NULL))&&(curr->num < value))

{

prev = curr;

curr = curr->next;

}

CSCE 2014 - Programming Foundations II 78

head 3 25 42

previous

current

SORTED INSERT

// Walk the list to insertion point

Node *curr = head;

node *prev = head;

while ((curr != NULL))&&(curr->num < value)) // FALSE

{

prev = curr;

curr = curr->next;

}

CSCE 2014 - Programming Foundations II 79

head 3 25 42

previous

current
We are now ready to

insert value 33 here

SORTED INSERT

▪ Implementation of sorted insert

// Create new node and connect to current node

Node *ptr = new Node();

ptr->num = value;

ptr->next = curr;

CSCE 2014 - Programming Foundations II 80

We know the value in the new

node is less than the value in the

current node, so we set the next

pointer to the current node

SORTED INSERT

CSCE 2014 - Programming Foundations II 81

head 3 25 42

33previous current

ptr

SORTED INSERT

▪ Implementation of sorted insert

// Connect previous node to new node

if (prev == head)

head = ptr;

else

prev->next = ptr;

CSCE 2014 - Programming Foundations II 82

This handles normal case

where there are nodes

before inserted node

This handles special case

where new node will be

at the head of the list

SORTED INSERT

CSCE 2014 - Programming Foundations II 83

head 3 25 42

33previous current

ptrThis handles normal case

where there are nodes

before inserted node

SORTED INSERT

CSCE 2014 - Programming Foundations II 84

head 42

33

previous

current

ptrThis handles special case

where new node will be

at the head of the list

LINKED LISTS

OPERATION: DELETE NODE

DELETE NODE

▪ How can we remove data from a linked list?

▪ Search the linked list to find the node to delete

▪ Change linked list pointers to “jump over” node

▪ Return memory space to the operating system

▪ Handle special cases (delete first node, last node, empty list)

CSCE 2014 - Programming Foundations II 86

head 7 21 3

DELETE NODE

▪ What will this code do?

CSCE 2014 - Programming Foundations II 87

head 7 21 3

prev

curr

Node *curr = head;

Node *prev = NULL;

while ((curr != NULL)

&& (curr->num != 21))

{

 prev = curr;

 curr = curr->next;

}

DELETE NODE

▪ What will this code do?

CSCE 2014 - Programming Foundations II 88

head 7 21 3

prev

curr

Node *curr = head;

Node *prev = NULL;

while ((curr != NULL)

&& (curr->num != 21))

{

 prev = curr;

 curr = curr->next;

}

DELETE NODE

▪ What will this code do?

CSCE 2014 - Programming Foundations II 89

head 7 21 3

prev

curr

Node *curr = head;

Node *prev = NULL;

while ((curr != NULL)

&& (curr->num != 21))

{

 prev = curr;

 curr = curr->next;

}

Condition is true

DELETE NODE

▪ What will this code do?

CSCE 2014 - Programming Foundations II 90

head 7 21 3

prev

curr

Node *curr = head;

Node *prev = NULL;

while ((curr != NULL)

&& (curr->num != 21))

{

 prev = curr;

 curr = curr->next;

}

Move both pointers

to next nodes

DELETE NODE

▪ What will this code do?

CSCE 2014 - Programming Foundations II 91

head 7 21 3

prev

curr

Node *curr = head;

Node *prev = NULL;

while ((curr != NULL)

&& (curr->num != 21))

{

 prev = curr;

 curr = curr->next;

}

Loop stops when we

reach node with 21

DELETE NODE

▪ What will this code do?

CSCE 2014 - Programming Foundations II 92

head 7 21 3

prev

curr

Node *curr = head;

Node *prev = NULL;

while ((curr != NULL)

&& (curr->num != 21))

{

 curr = curr->next;

 prev = curr;

}

Order of operations

really matters here

DELETE NODE

▪ What will this code do?

CSCE 2014 - Programming Foundations II 93

head 7 21 3

prev

curr

Node *curr = head;

Node *prev = NULL;

while ((curr->num != 42)

&& (curr != NULL))

{

 prev = curr

 curr = curr->next;

}

DELETE NODE

▪ Now we can change pointers to “jump over” deleted node

// Adjust pointers and delete node

if (curr != NULL) && (curr == head)

head = curr->next;

else if (curr != NULL)

prev->next = curr->next;

delete curr;

CSCE 2014 - Programming Foundations II 94

Special case where head

points to deleted node

Normal case with node in

middle or end of linked list

Return memory to O/S

DELETE NODE

▪ Verify code can delete node 7

CSCE 2014 - Programming Foundations II 95

head 7 21 3

prev

curr
// Adjust pointers

if (curr != NULL) && (curr == head)

 head = curr->next;

else if (curr != NULL)

 prev->next = curr->next;

delete curr;

DELETE NODE

▪ Verify code can delete node 21

CSCE 2014 - Programming Foundations II 96

head 7 21 3

prev

curr
// Adjust pointers

if (curr != NULL) && (curr == head)

 head = curr->next;

else if (curr != NULL)

 prev->next = curr->next;

delete curr;

DELETE NODE

▪ Verify code can delete node 3

CSCE 2014 - Programming Foundations II 97

head 7 21 3

prev

curr
// Adjust pointers

if (curr != NULL) && (curr == head)

 head = curr->next;

else if (curr != NULL)

 prev->next = curr->next;

delete curr;

DELETE ALL NODES

▪ In the destructor function we have to delete all nodes and

give memory back to the operating system

Node * ptr = head;

while (ptr != NULL)

{

head = head->next;

delete ptr;

ptr = head;

}

CSCE 2014 - Programming Foundations II 98

If we swap order we would be

using a pointer after it is deleted

(which could cause random bugs)

LINKED LISTS

HEAD AND TAIL POINTERS

HEAD AND TAIL POINTERS

▪ We can insert nodes at the tail much faster if we maintain

a pointer to the tail of the linked list.

Node *ptr = new Node();

ptr->Value = “John”;

ptr->Next = NULL;

Tail->Next = ptr;

Tail = ptr;

CSCE 2014 - Programming Foundations II 100

tail

Bob Ann Suehead

Clearly much faster than walking

the whole linked list to find tail

HEAD AND TAIL POINTERS

▪ We need to adapt insert tail code to handle the special

case of inserting into empty linked list

// Create new node

Node *ptr = new Node();

ptr->Value = value;

ptr->Next = NULL;

// Insert new node

if (Head == NULL)

Head = ptr;

else

Tail->Next = ptr;

Tail = ptr;

CSCE 2014 - Programming Foundations II 101

HEAD AND TAIL POINTERS

▪ We also need to modify the delete code to make sure set

tail pointer correctly when the tail node is deleted

...

// Special case if we delete tail

if (curr == tail)

tail = prev;

// Special case if we delete last node

if (head == NULL)

tail = NULL;

CSCE 2014 - Programming Foundations II 102

LINKED LISTS

DOUBLY LINKED LISTS

DOUBLY LINKED LISTS

▪ In order to walk the linked list in either direction, we can

add a second pointer called prev to the Node object

class Node

{

public:

string name;

Node *prev;

Node *next;

};

CSCE 2014 - Programming Foundations II 104

These are not reserved words but

almost everyone uses prev and next

Susan

DOUBLY LINKED LISTS

▪ A doubly linked list has nice symmetry

▪ We can start at head and follow next from L to R

▪ We can start at tail and follow prev from R to L

▪ We must modify insert and delete to use both pointers

▪ In some cases, code is easier because we can use prev

CSCE 2014 - Programming Foundations II 105

tail

Brian John Susan
head

DOUBLY LINKED LISTS

CSCE 2014 - Programming Foundations II 106

tailBrian John Susanhead

David

ptr curr

▪ For sorted insertion, we must update four pointers

Node *ptr = new Node();

ptr->name = “David”;

DOUBLY LINKED LISTS

▪ For sorted insertion, we must update four pointers

ptr->next = curr;

ptr->prev = curr->prev;

CSCE 2014 - Programming Foundations II 107

tailBrian John Susanhead

David

ptr curr

DOUBLY LINKED LISTS

▪ For sorted insertion, we must update four pointers

curr->prev->next = ptr;

curr->prev = ptr;

CSCE 2014 - Programming Foundations II 10

8

tailBrian John Susanhead

David

ptr curr

DOUBLY LINKED LISTS

▪ For sorted insertion, we must update four pointers

curr->prev = ptr; // Wrong order

curr->prev->next = ptr; // Wrong order

CSCE 2014 - Programming Foundations II 10

9

tailBrian John Susanhead

David

ptr curr

DOUBLY LINKED LISTS

bool List::SortedInsert(int value)

{

// Create new node

LNode *ptr = new LNode();

ptr->Value = value;

ptr->Next = NULL;

ptr->Prev = NULL;

// Insert into empty list

if (Head == NULL)

{

Head = ptr;

Tail = ptr;

}

CSCE 2014 - Programming Foundations II 110

DOUBLY LINKED LISTS

// Insert before head

else if (value <= Head->Value)

{

ptr->Next = Head;

Head->Prev = ptr;

Head = ptr;

}

// Insert after tail

else if (value >= Tail->Value)

{

ptr->Prev = Tail;

Tail->Next = ptr;

Tail = ptr;

}

CSCE 2014 - Programming Foundations II 111

DOUBLY LINKED LISTS

// Insert in middle

else

{

// Walk list to deletion point

LNode *curr = Head;

while ((curr != NULL) && (curr->Value < value))

curr = curr->Next;

// Connect node to list

ptr->Next = curr;

ptr->Prev = curr->Prev;

curr->Prev->Next = ptr;

curr->Prev = ptr;

}

return true;

}

CSCE 2014 - Programming Foundations II 112

Here is the code connecting

nodes from the slide above

DOUBLY LINKED LISTS

▪ For deletion from this list, we must update two pointers

▪ Pointer from previous node to the next node

▪ Pointer from next node to the previous node

CSCE 2014 - Programming Foundations II 113

tail

3 17 42

head
ptr

DOUBLY LINKED LISTS

▪ For deletion from this list, we must update two pointers

▪ Pointer from previous node to the next node

▪ Pointer from next node to the previous node

ptr->next->prev = ptr->prev;

CSCE 2014 - Programming Foundations II 114

tail

3 17 42

head
ptr

DOUBLY LINKED LISTS

▪ For deletion from this list, we must update two pointers

▪ Pointer from previous node to the next node

▪ Pointer from next node to the previous node

ptr->prev->next = ptr->next;

CSCE 2014 - Programming Foundations II 115

tail

3 17 42

head
ptr

DOUBLY LINKED LISTS

bool List::Delete(int value)

{

// Walk list to deletion point

LNode *curr = Head;

while ((curr != NULL) && (curr->Value != value))

curr = curr->Next;

// Check if value was found

if (curr == NULL)

return false;

CSCE 2014 - Programming Foundations II 116

DOUBLY LINKED LISTS

// Connect previous node to next node

if (curr == Head)

Head = curr->Next;

else

curr->Prev->Next = curr->Next;

// Connect next node to previous node

if (curr == Tail)

Tail = curr->Prev;

else

curr->Next->Prev = curr->Prev;

// Delete node from list

delete curr;

return true;

};

CSCE 2014 - Programming Foundations II 117

LINKED LISTS

SUMMARY

SUMMARY

▪ Linked lists can be used for applications where the
amount of data varies at run time

▪ We can insert and delete data without moving other data

▪ We can search for specific data items in the linked list

▪ We can print all of the data in the linked list

▪ We can create sorted or unsorted linked lists

▪ We can use tail pointers to speed up insert tail

▪ We can use doubly linked lists for symmetry

▪ All linked list operations require that we “walk the list”

▪ We can not directly access specific locations in linked list

▪ We can not implement binary search on linked list

CSCE 2014 - Programming Foundations II 119

	Slide 1: Linked lists
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: OVERVIEW
	Slide 5: OVERVIEW
	Slide 6: OVERVIEW
	Slide 7: OVERVIEW
	Slide 8: overview
	Slide 9: overview
	Slide 10: overview
	Slide 11: overview
	Slide 12: OVERVIEW
	Slide 13: OVERVIEW
	Slide 14: overview
	Slide 15: Linked lists
	Slide 16: Create list
	Slide 17: Linked lists
	Slide 18: Insert head
	Slide 19: Insert head
	Slide 20: Insert head
	Slide 21: Insert head
	Slide 22: Insert head
	Slide 23: Insert head
	Slide 24: Insert head
	Slide 25: Linked lists
	Slide 26: Insert tail
	Slide 27: Insert tail
	Slide 28: Insert tail
	Slide 29: Insert tail
	Slide 30: Insert tail
	Slide 31: Insert tail
	Slide 32: Insert tail
	Slide 33: Insert tail
	Slide 34: Insert tail
	Slide 35: Insert tail
	Slide 36: Insert tail
	Slide 37: Insert tail
	Slide 38: Insert tail
	Slide 39: Insert tail
	Slide 40: Linked lists
	Slide 41: Print list
	Slide 42: Print list
	Slide 43: Print list
	Slide 44: Print list
	Slide 45: Print list
	Slide 46: Print list
	Slide 47: Print list
	Slide 48: Print list
	Slide 49: Print list
	Slide 50: Print list
	Slide 51: Print list
	Slide 52: Print list
	Slide 53: Print list
	Slide 54: Print list
	Slide 55: Print list
	Slide 56: Print list
	Slide 57: Print list
	Slide 58: Print list
	Slide 59: Print list
	Slide 60: Linked lists
	Slide 61: Search list
	Slide 62: Search list
	Slide 63: Search list
	Slide 64: Search list
	Slide 65: Search list
	Slide 66: Search list
	Slide 67: Search list
	Slide 68: Search list
	Slide 69: Search list
	Slide 70: Linked lists
	Slide 71: Sorted insert
	Slide 72: Sorted insert
	Slide 73: Sorted insert
	Slide 74: Sorted insert
	Slide 75: Sorted insert
	Slide 76: Sorted insert
	Slide 77: Sorted insert
	Slide 78: Sorted insert
	Slide 79: Sorted insert
	Slide 80: Sorted insert
	Slide 81: Sorted insert
	Slide 82: Sorted insert
	Slide 83: Sorted insert
	Slide 84: Sorted insert
	Slide 85: Linked lists
	Slide 86: Delete node
	Slide 87: Delete node
	Slide 88: Delete node
	Slide 89: Delete node
	Slide 90: Delete node
	Slide 91: Delete node
	Slide 92: Delete node
	Slide 93: Delete node
	Slide 94: Delete node
	Slide 95: Delete node
	Slide 96: Delete node
	Slide 97: Delete node
	Slide 98: Delete all nodes
	Slide 99: Linked lists
	Slide 100: Head and tail pointers
	Slide 101: Head and tail pointers
	Slide 102: Head and tail pointers
	Slide 103: Linked lists
	Slide 104: Doubly linked lists
	Slide 105: Doubly linked lists
	Slide 106: Doubly linked lists
	Slide 107: Doubly linked lists
	Slide 108: Doubly linked lists
	Slide 109: Doubly linked lists
	Slide 110: Doubly linked lists
	Slide 111: Doubly linked lists
	Slide 112: Doubly linked lists
	Slide 113: Doubly linked lists
	Slide 114: Doubly linked lists
	Slide 115: Doubly linked lists
	Slide 116: Doubly linked lists
	Slide 117: Doubly linked lists
	Slide 118: Linked lists
	Slide 119: summary

